1.The Bahadur representations for this quantile estimator are established in order to derive asymptotic properties of the sequential fixed-width confidence intervals estimation for quantiles.
基于左截斷右刪失數據下的乘積限估計構造了分位數固定寬度序貫置信區間及其估計,研究了序貫置信區間估計的漸近性質。
2.The Bahadur representations for this quantile estimator are established in order to derive asymptotic properties of the sequential fixed-width confidence intervals estimation for quantiles.
基于左截斷右刪失數據下的乘積限估計構造了分位數固定寬度序貫置信區間及其估計,研究了序貫置信區間估計的漸近性質。
3.In this paper, the preferences on stochastic payoffs are defined by quantiles, and the Nash equilibrium of the bimatrix game with stochastic payoffs is given base on the preferences.
首先,本文將引人中位數來定義隨機支茍值的偏好,并在此偏好的基礎上進一步定義帶隨機支付雙矩陣博弈的納什均衡。
4.There already exist Median, Quartiles and Tenth quantile etc. Based on this, the authors put out the concept and (calculation) method for tri-sectional quantiles in this article.
統計中已有確定中位數、四分位數、十分位數等的方法,文章在此基礎上提出三分位數的概念及其確定的方法。
5.The theory of quantile regression, Copula quantile regression, extremal quantiles and applications of quantile regression in many fields are discussed in this paper.
本文主要對分位數回歸的理論、Copula分位數回歸、極端分位數以及分位數回歸在各個領域的應用進行了深入研究。
6.This parameter controls the number of quantiles that will be collected when the WITH DISTRIBUTION option is specified on the RUNSTATS command.
該參數控制在RUNSTATS命令上指定WITHDISTRIBUTION選項時將收集的分位數(quantile)數目。
7.Quantile regression is a basic tool for estimating conditional quantiles of a response variable Y given a vector of regressors X.
分位數回歸是給定 回歸變量X,估計響應變量Y條件分位數的一個基本方法。
8.We assign a likelihood (high, medium or low; percentage points; statistical quantiles) to various events we are concerned about.
我們將一種可能性(高、中或低;百分比;統計數量)分配給我們所關心的事件之上。